Работа на разрыв

Работа на разрыв

ГРП — вчера, сегодня, завтра

Текст: София Зорина, Кирилл Николаев
Фото: Евгений Уваров, Александр Таран

Двадцать лет назад был проведен первый в истории компании гидроразрыв пласта. Опытным полигоном для этого стало Карамовское месторождение «Ноябрьскнефтегаза». С тех пор технология гидроразрыва стала только актуальнее: сегодня ее не просто применяют для интенсификации добычи на активах «Газпром нефти» — с ней связывают большие надежды по освоению трудноизвлекаемых запасов

Первый опыт

Поиск технологий, позволяющих интенсифицировать добычу нефти, начался еще в конце XIX века в США — практически сразу после того, как стали очевидны блестящие финансовые перспективы нефтяного бизнеса. Тогда малую эффективность применявшегося бурового оборудования и способов добычи попытались компенсировать взрывами нитроглицерина в скважине. В целом мысль была верной — таким образом удавалось разрушать породы в призабойной зоне, обеспечивая больший приток пластового флюида. Впрочем, способ оказался опасным и довольным грубым.

Следующим шагом стала обработка забоя кислотой для растворения известняка, цементирующего породы некоторых нефтяных коллекторов. Первые кислотные обработки были выполнены еще в 1895 году. В промышленных масштабах этот метод стали применять лишь через 30 лет. Тогда же выяснилось, что закачка кислоты под значительным давлением оказывается более эффективной. Это дало толчок развитию идеи о разрыве твердых пород с помощью давления потока жидкости. Первопроходцами в деле внедрения гидроразрыва пласта считают американцев. Проведение первого успешного ГРП в конце 1940-х годов приписывается компании Halliburton, тогда же появилась и первая теоретическая работа на этот счет — американский инженер Кларк* описал сам метод и теоретические представления о происходящем в скважине процессе. Положительные результаты, которые наблюдались при проведении гидроразрывов, очень быстро сделали эту технологию популярной на нефтепромыслах США. Несмотря на ее малую изученность и несовершенство, уже к 1955 году общее количество гидроразрывов на американских скважинах достигло 100 тысяч.

В Советском Союзе первые ГРП начали проводить в начале 1950-х годов. Причем именно советские ученые стояли у истоков создания теоретических работ, позволяющих моделировать процесс гидроразрыва и предсказывать его результаты. Основатель Московского физтеха академик Сергей Христианович с коллегами разработали теорию образования и распространения двумерных трещин в пласте. Их наработки до сих пор используются при создании прогнозных моделей. Пик применения гидроразрыва в СССР пришелся на 1958–1962 годы, когда количество операций превышало 1,5 тыс. в год. С открытием крупных высокодебитных месторождений в Западной Сибири от применения ГРП практически отказались — «легкая» нефть позволяла обходиться без дополнительных методов интенсификации. Вновь внимание на технологию гидроразрыва в России обратили лишь в конце 1980-х, когда структура запасов нефти и газа существенно изменилась.

Динамика ГРП в «Газпром нефти»

В поисках лучшего

К сожалению, за несколько десятилетий невостребованности отечественное оборудование и опыт применения гидроразрыва пласта значительно отстали от мирового уровня. Поэтому в новейшей истории проведение ГРП на российских месторождениях сразу же стало прерогативой иностранных сервисных компаний. Сегодня ситуация на рынке изменилась, тем не менее, все новые веяния в технологии по-прежнему приходят из-за рубежа. Главный вектор развития — удешевление технологии, повышение ее эффективности и поиск способов применения в самых сложных случаях, таких как разработка нетрадиционных запасов.

Схематично ГРП можно свести к ряду последовательных операций: определение места разрыва для образования трещин в породах нефтяного пласта, создание на выбранных участках скважин условий (отверстий) для давления на пласт, закачка в пласт под большим давлением разрывающей жидкости, закачка в образовавшуюся трещину расклинивающего агента (проппанта), промывка скважины и ее эксплуатация. Со времени проведения первого ГРП так или иначе претерпели изменения все перечисленные этапы: сегодня технологию стараются максимально подогнать под условия каждого месторождения. Современный гидроразрыв, при всей массовости его применения,— это очень индивидуальная технология, обеспечивающая оптимальную эффективность именно за счет подбора параметров для каждого конкретного случая.

В первых гидроразрывах в качестве закачиваемой жидкости использовали техническую воду, а для расклинивания скважины — речной песок. ГРП проводили на любой скважине, где хотелось увеличить дебит, без предварительных расчетов возможных последствий. Современные компьютерные возможности обработки геологической информации и построения модели пла­ста позволяют выбрать наиболее подходящее место для инициации образования трещины. А дальнейшее моделирование с учетом свойств пластовых пород дает возможность рассчитать необходимые параметры закачиваемой жидко­сти и подобрать подходящий проппант, которые обеспечат получение трещины оптимальных размеров с максимальной проводимостью.

«В „Газпром нефти“ развитие технологии ГРП шло по пути поиска наиболее подходящих составов жидкости гидроразрыва, подбора оптимальных типов проппанта,— рассказывает началь­ник отдела дизайнов ГРП „Газпромнефть НТЦ“ Ильдар Файзуллин. — Закачиваемый в скважину гель в идеале должен быть достаточно вязким, чтобы не уходить в пласт, а также без потерь доносить проппант до трещины, не давая ему осесть в скважине. В то же время впоследствии жидкость должна легко вытекать из трещины, чтобы не уменьшать ее проводимость». По словам специалиста, для этого в гель ГРП добавля­ют специальные вещества — брейкеры, снижаю­щие вязкость жидкости. Современные брейкеры заключают в капсулы, которые разрушаются под давлением в трещине. Таким образом гель начинает разжижаться только после завершения образования и стабилизации трещины. Поми­мо брейкеров в состав жидкости гидроразрыва могут входить и другие специальные компонен­ты, например уменьшающие трение жидкости при прохождении по трубе. Это позволяет эконо­мить на затратах мощности. Есть свои секреты и в процессе выбора проппанта, который эволю­ционировал от обычного речного песка до шари­ков из обожженной глины или бокситов. Здесь ищут оптимальное соотношение цены, прочно­ сти и проводимости расклинивающего агента в конкретных горно-геологических условиях.

Количество ГРП на нефтяных скважинах США

Новые горизонты

Сегодня странно слышать, что гидроразрыв пла­ста можно проводить лишь для того, чтобы пре­одолеть призабойную зону, испорченную оставшимся в ней буровым раствором, и связать чистый пласт со скважиной. Хотя двадцать лет назад это был обычный повод: в пластах с высо­кой проницаемостью буровой раствор загряз­нял (кольматировал) достаточно обширную зону около скважины, препятствуя нефтедобы­че. Сегодня рабочих пластов с высокой прони­цаемостью практически не осталось, а главная задача при проведении ГРП — увеличить интен­сивность нефтеотдачи за счет большего охвата продуктивной зоны, сделать рентабельной добычу из неудобных коллекторов с низкими фильтрационно-емкостными свойствами.

Многостадийный гидроразрыв пласта

Новые задачи требуют и нового подхода к реализации технологии. Так, если при первых ГРП в пласт закачивалось не более 5–10 тонн проппанта, то сегодня эти значения достигают сотен тонн. Большое количество проппанта необходимо при создании протяженных трещин, охватывающих значительную часть пласта. А чтобы достичь таких показателей закачки, нужны мощные насосы, точный расчет геометрии трещины и подходящая жидкость гидроразрыва. Подбор жидкостей — это отдельная задача, стоящая перед химиками. Можно без преувеличения сказать, что успех проведения ГРП минимум на 60% зависит от верности ее решения.

Если первые гидроразрывы в компании проводились только в наклонно-направленных скважинах, то в начале 2000-х годов было принято решение попробовать эффективность гидроразрыва на горизонтальных скважинах. Впрочем, тогда речь шла о горизонталках, пробуренных в достаточно мощных и высокопроницаемых участках на традиционных месторождениях, без существенных осложнений. Целью проведения ГРП на таких скважинах, изначально не предназначенных для этой технологии, было желание поднять добычу, уменьшившуюся вследствие естественной потери продуктивности из-за кольматации призабойной зоны скважины как частичками от матрицы породы, так и привнесенными загрязнениями при ремонтах. При этом неудачным ГРП ситуацию можно было значительно ухудшить, например, в том случае, если бы трещина соединила пласт с обводненными участками. Первый опыт гидроразрыва на горизонтальных скважинах, несмотря на все но, оказался вполне успешным и позднее позволил более уверенно подойти к внедрению технологии многостадийных ГРП на горизонтальных скважинах в низкопроницаемых коллекторах.

Массовое применение технологии многостадийного гидроразрыва пласта началось в начале ХХI века в Америке после первых настоящих успехов на сланцевых месторождениях нефти и газа. Именно МГРП стало основой сланцевой революции. В России технологию начали внедрять в 2010-х. В «Газпром нефти» в качестве пробного актива был выбран Вынгапуровский участок — месторождение, где остаточные запасы невозможно вовлечь в разработку традиционными способами. Опытно-промышленные работы по проведению здесь четырехстадийного гидроразрыва были проведены в 2011 году.

«Газпромнефть-ноябрьскнефтегаз»: 20 лет на разрыв

В середине 90‑х годов в «Ноябрьскнефтегазе» — одном из четырех предприятий, составивших основу созданной в 1995 году «Сибнефти», — объем добычи стал быстро сокращаться. Требовались альтернативные подходы к добыче на зрелых активах. Одним из таких подходов стало применение гидроразрыва пласта.

23 июня 1995 года на скважине № 459 Карамовского месторождения был проведен первый гидроразрыв в истории Ноябрьского региона. Тогда в толщу пласта закачали всего две тонны проппанта, но начало масштабному внедрению новой технологии было положено. Всего с 1995 года на месторождениях «Ноябрьскнефтегаза» провели около 4,8 тыс. операций ГРП. За это время средний объем закачиваемого проппанта увеличился до 80 тонн на скважину, а среднее количество стадий многостадийного ГРП достигло семи. Абсолютный рекорд по количеству гидроразрывов за месяц — 96 операций — в «Газпромнефть-Ноябрьскнефтегазе» был зафиксирован в октябре 2015 года.

Специалисты предприятия постоянно ищут новые варианты применения технологии ГРП.

Так, на горизонтальной скважине № 399/16 Карамовского месторождения впервые опробована технология поинтервального трехстадийного гидроразрыва пласта с предварительным проведением гидропескоструйной перфорации с малогабаритными перфораторами на гибкой насосно-компрессорной трубе (ГНКТ или койлтюбинге). Изоляция интервалов ГРП происходит за счет проппантной пробки, оставляемой в стволе скважины на финальной стадии закачки. Технология актуальна для скважин, в которых технические особенности не позволяют спускать хвостовики традиционного многостадийного ГРП (с шарами и седлами). Такие скважины обычно заканчивали зарезкой горизонтальных или наклонно-направленных боковых стволов с дальнейшим проведением одностадийного ГРП. Новая технология позволила довести число фраков до трех, обеспечивая больший приток флюида к забою скважины. Инновация обеспечит вовлечение в разработку запасов, добыча которых ранее была нерентабельной.

Также в 2015 году продолжался поиск надежной технологии для проведения повторного гидроразрыва пласта на скважинах с компоновками МГРП. «У нас есть значительный фонд скважин как в Ноябрьске, так и в других регионах, где повторный многостадийный ГРП будет уместен, — рассказал начальник отдела дизайнов ГРП „Газпромнефть НТЦ“ Ильдар Файзуллин. — Поэтому сегодня главная задача — найти наиболее подходящую технологию». Вся сложность состоит в том, что для повторного гидроразрыва необходимо перекрыть уже имеющиеся открытые трещины. В настоящее время на Вынгапуровском месторождении проводятся опытные работы с применением специальных добавок, которые закачиваются в старые трещины до проведения повторного гидроразрыва и блокируют их, чтобы свести к минимуму утечки жидкости ГРП.

У многостадийного ГРП есть одно важное отличие от обычного гидроразрыва: для его реализации требуется специальное оборудование, опускаемое в скважину при ее заканчивании. Причем вариантов такого оборудования немало — его нужно подбирать исходя из пластовых условий и экономической целесообразности.

«Изначально при проведении МГРП на горизонтальных скважинах мы использовали компоновки с муфтами одноразового действия и нерастворимыми композитными шарами в качестве отсекателей (см. схему),— вспоминает Ильдар Файзуллин.— Заколонное пространство перекрывали с помощью разбухающих пакеров — своеобразных пробок, набухающих под действием нефти. Пакера разбивали на секции пространство за эксплуатационной колонной, куда могла попасть жидкость ГРП с проппантом в процессе постадийного проведения гидроразрыва. Сегодня мы уже имеем опыт цементирования заколонного пространства. Это более сложная и дорогая операция, но она обеспечивает надежность проведения гидроразрыва и позволяет лучше контролировать места инициации трещин».

Уже в 2014 году количество многостадийных гидроразрывов на горизонталках в «Газпром нефти» выросло до 168 операций за год. Причем меняется не только количество, но и качество: сегодня обычным делом считается 10-стадийный гидроразрыв, а рекордное к настоящему времени количество стадий — 15 — проведено на Южно-Приобском месторождении «Газпромнефть-Хантоса» в конце уходящего года.

Александр Билинчук,
начальник департамента геологии и разработки:

С каждым годом объем запасов углеводородов в легко разрабатываемых пластах снижается, и на смену приходят низкопроницаемые объекты, выраженные высокой неоднородностью и низкими коллекторскими свойствами с высокой степенью расчлененности пласта. Это негативно сказывается на уровнях добычи углеводородов.

Один из наиболее эффективных методов повышения продуктивности скважин, вскрывших такие пласты,— ГРП, который позволяет значительно увеличить темп отбора нефти. После ГРП увеличивается связь скважины с системой естественных трещин и с зонами повышенной проницаемости, расширяется область пласта, дренируемая скважиной.

Наиболее широкое распространение получила технология многостадийного ГРП в горизонтальных скважинах, в результате применения которой кратно повышается дебит добывающих скважин. Также сегодня мы развиваем уникальные технологии, в ряду которых многоствольные скважины с проведением МГРП в каждом из стволов. На текущий момент идет бурение первой в России двуствольной скважины с МГРП на Крайнем месторождении. Кроме того, сейчас активно испытываются технологии проведения повторного МГРП, использование которых станет актуально через несколько лет.

Последнее слово в развитии технологии — компоновки с многоразовыми муфтами и пакером в качестве отсекателя зон с уже проведенным гидроразрывом (см. схему). В этом случае пакер, активируемый при механическом сдавливании, заменяет традиционные композитные шары, позволяя делать максимальное число стадий разрыва, ограниченное только длиной скважины и экономическими расчетами. Оборудование для открытия муфт с инсталлированным пакером спускается в скважину на гибких трубах (койлтюбинге). В «Газпром нефти» подобная технология проведения ГРП впервые была применена на Приобском месторождении. Именно с ее помощью удалось увеличить количество стадий разрыва до 15 с перспективой и дальнейшего роста.

Трудноизвлекаемый опыт

Как это ни парадоксально, нельзя сказать, что с развитием технологии гидроразрыва она комплексно усложняется. Есть отдельные этапы, которые, несомненно, обрастают более сложной техникой, — например, моделирование развития трещин, вторичные методы исследования скважин для получения наиболее достоверной картины и анализа гидроразрыва — сейсмика, геофизические методы исследования. В то же время более мощные насосы дают возможность использовать менее сложные жидкости гидроразрыва — при высоких скоростях закачки вязкость жидкости может быть невысокой, а в некоторых случаях это и вовсе необходимое условие успешного ГРП. К таким случаям относится многостадийный разрыв в слабопроницаемых коллекторах, например, баженовской свите.

Нефтяные залежи, относящиеся к бажену, сегодня надежда отечественной нефтянки. «Газпром нефть» тратит немало средств и сил на то, чтобы найти оптимальный способ разработки таких трудноизвлекаемых запасов. Очевидно, что главным инструментом здесь должен стать многостадийный гидроразрыв пласта — осталось подобрать его оптимальные параметры. Как показал опыт проведения первых МГРП на бажене, стандартные жидкости и компоновки здесь оказываются недостаточно эффективными. В твердых породах баженовской свиты удается создать очень узкие трещины, а гель ГРП с обычной вязкостью в таких трещинах оседает, образуя плохо смываемую полимерную пленку. Выход — использовать в качестве жидкости воду или даже «скользкую воду» — с пониженным трением.

Хотя изначально для гидроразрыва использовали именно воду, от нее скоро отказались. Причина проста: в силу малой вязкости вода не доносит проппант до трещины, он оседает в скважине и не только не способствует образованию трещины, но и мешает проведению операции. Сегодня с этой проблемой можно справиться за счет мощнейших насосов и сверхвысоких скоростей закачки — в этом случае проппант просто не успевает выпасть в скважине. Именно такой вариант решено было применить на бажене. При увеличении скорости течения жидко­ сти растет и давление на стенки трубы. Чтобы не превышать допустимых параметров давле­ ния, необходимо использовать трубы большего диаметра. На практике это означает, что от при­ менения компоновок ГРП с муфтами и насоснокомпрессорными трубами (НКТ) на бажене при­шлось отказаться.

«Первый десятистадийный ГРП на баженовской свите по новой схеме был проведен на Паль­яновском месторождении в декабре 2015 года, рассказал главный геолог „Газпромнефть-Хантоса“ Михаил Черевко. — Мы использовали безшаровую технологию ГРП, в которой стадии гидроразрыва отделяются друг от друга специ­альными пробками, спускаемыми на гибких насосно-компрессорных трубах (ГНКТ), а закачка проппанта при каждом ГРП ведется через перфо­рационные каналы. Эта технология дала возмож­ ность создания разветвленной системы трещин, направление которых мы можем задавать и кон­тролировать». На Западе эта технология успешно применяется уже около десяти лет и носит название рlug and perf. В этом случае пласт вскрыва­ется с помощью гидропескоструйной перфора­ции без использования муфт, причем в рамках одной стадии разрыва делается сразу несколько отверстий, что позволяет создавать сеть трещин, а не одну магистральную трещину, как при обычном ГРП. Жидкость гидроразрыва нагнетается прямо по эксплуатационной колонне, без спуска в скважину колонны НКТ, а разделение стадий разрыва происходит специальными композит­ ными пробками.

Насколько эффективной окажется такая технология проведения МГРП покажет время. «В России к настоящему моменту по техноло­гии рlug and perf сделано две скважины, обе удачные, — поделился руководитель направления по заканчиванию скважин проекта „Бажен“ „Газпром нефти“ Александр Мильков.— Мы так­ же надеемся на положительный результат».

Впрочем, поиск новых решений продолжает­ся, благо еще есть куда стремиться. По мнению Александра Милькова, будущее — за мобильным оборудованием, повышением скорости закачки и упрощением химического состава гелей ГРП. А в целом — за недорогими и эффективными решениями.

ЧИТАЙТЕ ТАКЖЕ