Методы воздействия

Методы воздействия

Методы увеличения скорости и эффективности разработки месторождений

Вытеснение нефти из пласта

Термические методы извлечения нефти



Инфографика: Рамблер Инфографика / Татьяна Удалова

Щелочь-ПАВ-полимерное заводнение

Комплексное химическое заводнение, включающее в себя поочередную закачку в пласт поверхностно-активных веществ и полимеров, впервые было опробовано в 80-х годах прошлого века. Тогда же появилась идея разбавлять дорогие ПАВ более дешевой щелочью. Испытания такого тройного щелочь-ПАВ-полимерного заводнения показали, что объединение методов может дать увеличение КИН на 15–20%. Сама технология получила название ASP-заводнение — от английского alkali-surfactant-polymer — щелочь-ПАВ-полимер. К широкомасштабному использованию ASP-заводнения западные компании вернулись только в начале 2000-х.

В «Газпром нефти» возможность внедрения щелочь-ПАВ-полимерного заводнения изучают специалисты совместного с Shell предприятия «Салым Петролеум Девелопмент». Первые результаты испытаний, проведенных на одиночной скважине, дали обнадеживающие результаты: химическое заводнение мобилизовало 90% остаточной нефти. В настоящее время просчитываются экономические показатели использования технологии, изучаются условия ее эффективного применения.

Многостадийный гидроразрыв пласта в «Газпром нефти»

Первая горизонтальная скважина с четырьмя стадиями гидроразрыва пласта в «Газпром нефти» была введена в эксплуатацию в 2011 году на Вынгапуровском месторождении. А уже через три года количество горизонтальных скважин с МГРП во всех добывающих активах компании достигло 168. Изменяется не только число высокотехнологичных скважин, но и качественные характеристики технологии.

До последнего времени в компании применяли так называемый шаровой МГРП. Здесь каждая новая зона ГРП в скважине отделяется от предыдущей композитным или металлическим шаром. Диаметр шаров возрастает от зоны к зоне и не позволяет провести больше 10 операций гидроразрыва из-за конструктивных особенностей скважины. Новый вариант МГРП успешно опробовали в 2015 году специалисты «Газпромнефть-Хантоса»: на Приобском месторождении в качестве изолятора использовались не шары, а специальный инструмент с многоразовой уплотняющейся подушкой (пакером), которая разбухает и отделяет зоны, в которых ГРП уже проведен. Впоследствии разбухающий пакер возвращается к исходному размеру, что позволяет транспортировать оборудование к следующему месту разрыва внутри скважины (шары после завершения ГРП разрушают специально). В этом случае количество стадий ГРП ограничивается лишь технико-экономическими расчетами. На Приобском месторождении впервые в истории компании провели 11-стадийный гидроразрыв пласта.

Спрос на черное золото остается прежним, а легкодоступных запасов все меньше. Поэтому современная не фтедо быча немыслима без методов увеличения нефтеотдачи. Они позволяют извлекать максимум из старых месторождений и браться за разработку неудобных новых, добыча из которых еще несколько лет назад казалась неосуществимой

Коэффициент успеха

Оценить эффективность разработки месторождения можно по КИН — коэффициенту извлечения нефти (или нефтеотдаче). КИН вычисляют как отношение извлекаемых запасов к начальным геологическим запасам и рассчитывают на каждом этапе разработки месторождения. Сначала — проектный, основанный на данных геологоразведки о возможных запасах. Здесь учитываются строение коллектора и современный уровень технологий, позволяющий или не позволяющий эффективно работать с имеющимся коллектором. Проектный КИН дает возможность оценить экономическую обоснованность разработки.

В процессе добычи нефти обновляется геологическая модель месторождения, а вместе с ней пересчитывается и проектный КИН. К тому же регулярно отслеживается текущий КИН, равный доле добытой на определенный момент нефти относительно геологических запасов. Это позволяет соотносить реальность с планами и своевременно менять стратегию освоения месторождения. После того как месторождение переходит в разряд истощенных и добыча на нем прекращается, подсчитывают окончательный КИН и сравнивают его с проектным. Если проектный КИН достигнут, можно говорить о том, что разработка проведена эффективно.

Среднее значение коэффициента извлечения нефти при традиционных способах добычи не очень сильно изменилось за последние десятилетия. Причину этому, видимо, нужно искать в том, что, несмотря на развитие технологий, нефтяникам приходится иметь дело с ухудшающимися свойствами пластов. Согласно обобщенным данным КИН при первичных способах разработки (с использованием потенциала пластовой энергии) в среднем не выше 10%, а при вторичных способах (заводнении и закачке газа для поддержания пластовой энергии) — около 35%. Это среднемировые значения. В России коэффициент извлечения нефти, как правило, не превышает 20%. В «Газпром нефти» этот показатель достигает 25%, что обусловлено поздней стадией разработки на большинстве месторождений компании.

Хотя очевидно, что чем больше КИН, тем лучше, добыча нефти может быть рентабельной и при очень небольших коэффициентах. Но в этом случае в пласте остается большое количество неизвлеченной нефти, а это недополученная прибыль. Ситуация меняется, если в ход идут современные методы увеличения нефтеотдачи (МУН). Их применение позволяет увеличивать КИН в среднем на 7–15% и существенно наращивать извлекаемые запасы нефти на уже открытых месторождениях.

Агенты вытеснения

Методы увеличения нефтеотдачи делятся на несколько категорий, но все сводятся к двум задачам: более качественному вытеснению нефти из пласта и увеличению дренируемой зоны без бурения дополнительных скважин. Самым простейшим МУНом можно назвать ставшую уже обычной процедуру заводнения. Увеличение нефтеотдачи за счет закачки в пласт воды — это способ из серии «дешево и сердито». К сожалению, вода не вытесняет нефть равномерно. Из-за разных вязкостей и поверхностного натяжения воды и нефти, из-за неравномерного строения пород коллектора, разной величины пор вода может на отдельных участках пласта двигаться быстрее, чем нефть. В итоге часть нефти так и остается в порах.

Для того чтобы вытеснение нефти происходило более эффективно, в качестве вытесняющего агента применяют не воду, а различные растворы. Так, например, растворы поверхностно-активных веществ (ПАВ) уменьшают «цепляемость» нефти к породе, способствуя более легкому ее вымыванию из пор. Также ПАВы уменьшают поверхностное натяжение на границе нефть — вода, что содействует образованию водонефтяной эмульсии типа «нефть в воде», для перемещения которой в пласте необходимы меньшие перепады давления. Существенный недостаток ПАВов — это их дороговизна. Поэтому в качестве альтернативы нередко применяют щелочные растворы, которые, взаимодействуя с нафтеновыми кислотами нефти, образуют поверхностно-активные вещества прямо в пласте. Область применения щелочных растворов ограничивается наличием в пластовых водах ионов кальция — при реакции с щелочью они образуют хлопьеобразный осадок.

Другой результативный агент — это водный раствор полимеров, или, как их еще называют, загустителей. Полимеры увеличивают вязкость закачиваемой воды, приближая ее значение к вязкости нефти. В результате фронт вытеснения выравнивается — вода перестает опережать нефть в более проницаемых участках пласта. Часто в качестве загустителей применяют полиакриламиды. Они хорошо растворяются в воде и уже при концентрациях 0,01–0,05% придают ей вязкоупругие свойства. В настоящее время в «Газпром нефти» изучается возможность внедрить технологию комплексного щелочь-ПАВ-полимерного заводнения (см. врез).

Если полимеры загущают воду, то различные газы призваны разжижать нефть. Чтобы уменьшить вязкость нефти и увеличить ее подвижность, в пласт закачивают растворители — сжиженные природные газы: бутан, пропан и их смесь. Еще один вариант растворителя — углекислота (двуокись углерода СО2), которая также отлично растворяется в нефти.

Заводнение серной кислотой относится к комплексным методам увеличения нефтеотдачи. Серная кислота растворяет минералы пород коллектора, повышая тем самым их проницаемость. Таким образом увеличивается охват дренируемой зоны, то есть части пласта, активно отдающей нефть. В то же время при взаимодействии серной кислоты с ароматическими углеводородами, содержащимися в нефти, образуются поверхностно-активные сульфокислоты. Их роль в вытеснении нефти аналогична воздействию ПАВов, специально закачиваемых в пласт с поверхности.

В отличие от обычного нагнетания в пласт воды, заводнение с использованием различных химреагентов — мероприятие не из дешевых. Помимо финансовых рисков противопоказаниями к нему могут оказаться и другие факторы, такие как определенное строение коллектора, характеристики слагающих его пород, химические свойства нефти. Поэтому в ряде случаев эффективней оказываются иные способы повышения нефтеотдачи. Например, тепловое воздействие на пласт.

Теплый прием

Первые опыты по термическому воздействию на пласт были начаты еще в 30-х годах прошлого века в СССР. С тех пор накопился значительный объем данных лабораторных и промысловых испытаний, позволяющий сделать применение этих методов более осмысленным и продуктивным.

Самый простой способ — это нагнетание в пласт горячей воды. Начальная температура теплоносителя составляет несколько сотен градусов. Это позволяет значительно снизить вязкость нефти и увеличить ее подвижность. Однако, продвигаясь по пласту, вода остывает, а значит, нефть сначала будет вытесняться холодной водой, а потом горячей. В итоге прирост нефтеотдачи будет скачкообразным. Вытеснение горячей водой хорошо работает в однородных пластах и на высоких температурах. Как только температура воды падает до 80—90°C, можно получить обратную реакцию: вязкость нефти становится достаточной, чтобы еще лучше пропитать капилляры породы, но недостаточной, чтобы покинуть их.

Воду можно заменить горячим паром. Такой способ считается более эффективным, так как теплоемкость пара при прочих равных условиях больше, чем у воды. При нагнетании пара вязкость нефти повышается, а часть легких нефтяных фракций испаряется и фильтруется в виде пара. В холодной зоне эти пары конденсируются, обогащая нефть легкими компонентами и действуя как растворитель.

Еще один вариант термического воздействия — внутрипластовое горение. Этот зажигательный метод основан на естественной характеристике нефти как горючего. У забоя нагнетательной (зажигательной) скважины нефть поджигают с помощью электрических горелок или химической реакции. Как известно, для поддержания огня необходим кислород, поэтому с поверхности в скважину нагнетают воздух или смесь воздуха с природным газом. В результате фронт горения движется в пласте, разогревая нефть, уменьшая ее вязкость и заставляя интенсивнее двигаться в сторону области с пониженным давлением, то есть к эксплуатационным скважинам. Для успешного осуществления процесса необходимо, чтобы нефть распределялась в пласте достаточно равномерно, а сам коллектор обладал высокой проницаемостью и пористостью. Более устойчивые очаги горения возникают в залежах с тяжелой нефтью, обладающей повышенным содержанием хорошо горящих коксовых остатков.

Вообще говоря, именно при освоении месторождений с тяжелой высоковязкой нефтью чаще всего применяют термические МУНы. При снижении температуры в пласте происходит выпадение асфальтенов, смол и парафинов, затрудняющих фильтрацию. В случае добычи тяжелой нефти такое снижение фильтрационных свойств коллектора может стать критическим для эффективности разработки, поэтому дополнительный разогрев пласта бывает просто необходим.

На разрыв

Одним из самых популярных методов увеличения нефтеотдачи сегодня стал гидроразрыв пласта (ГРП), ведущий свою историю также из середины прошлого столетия. Сложно сказать, кому первому в голову пришла идея улучшать связь скважины с пластом за счет его разрыва. Здесь первенство оспаривают советские и американские ученые. Но долгое время этот способ существовал больше в теоретических выкладках, нежели на практике: во времена легкой нефти в нем не было особой нужды. Ситуация изменилась в конце прошлого века, когда ГРП стали активно применять для разработки месторождений с чрезвычайно низкими фильтрационно-емкостными свойствами пластов, включая карбонатные коллекторы. Яркий пример здесь освоение сланцевых месторождений в Америке, целиком и полностью обязанных своим успехом использованию гидроразрыва.

Сущность процесса ГРП заключается в нагнетании в пласт жидкости под большим давлением (до 60 МПа). В качестве основы для жидкости ГРП в зависимости от свойств коллектора и применяемых технологий используют пресную или минерализованную воду, углеводородные жидкости («мертвая» нефть, солярка), смеси с добавлением азота, двуокиси углерода, кислоты. Чтобы трещины сразу после снятия давления не смыкались, в них закачивают расклинивающий агент (проппант). Материал проппанта за всю историю развития технологии гидроразрыва неоднократно менялся. Сначала это была молотая ореховая скорлупа, затем кварцевый песок, позднее стали использовать стеклянные или пластмассовые шарики.

Протяженность трещин, образовавшихся после проведения ГРП, может достигать нескольких сотен метров при средней ширине до 5 мм. Они становятся новыми проводниками нефти, значительно улучшая контакт скважины с пластом и расширяя площадь притока жидкости в скважину. В среднем однократный гидроразрыв пласта позволяет увеличить дебит нефтяных скважин в два-три раза. В горизонтальной скважине может быть одновременно проведено несколько гидроразрывов. В этом случае говорят о многостадийном гидроразрыве пласта (МГРП). На сланцевых месторождениях счет стадий в горизонтальных скважинах идет уже на десятки. В общем случае количество стадий определяется исходя из экономической целесообразности и геологических особенностей коллектора.

В настоящее время многостадийный гидроразрыв пласта, пожалуй, единственный проверенный способ разработки месторождений, относящихся к трудноизвлекаемым запасам (ТРИЗ). Сюда входят и месторождения, где фильтрационные свойства пластов не могут обеспечить рентабельные притоки при применении обычных методов разработки, — им МГРП может дать новую жизнь, и такие пока экспериментальные варианты, как баженовская свита. Именно освоение залежей ТРИЗ стало толчком для активного внедрения МГРП в «Газпром нефти» (см. врез).

Призабойная чистка

Увеличению нефтеотдачи способствует не только масштабное воздействие на продуктивный пласт, но и работа с призабойной зоной — той частью пласта, через которую нефть поступает в эксплуатационную скважину. В процессе добычи нефти на забое и в призабойной зоне скважин оседают парафины и смолы, в перфорационных каналах накапливаются песчаные пробки. Способы, которые позволяют увеличить проницаемость призабойной зоны и очистить ее от мусора, называют методами интенсификации притока.

Кстати, гидроразрыв пласта изначально относили именно к таким методам и проводили его на забое наклонно-направленных скважин для повышения проницаемости пласта вблизи забоя. Другой способ механически расширить поровые каналы в породе вблизи забоя и создать микротрещины — виброобработка забоя. В этом случае к насосно-компрессорной трубе присоединяется вибратор, который создает колебания разной частоты и амплитуды прокачиваемой через него жидкости. Эти волны промывают призабойное пространство.

Повысить интенсивность притока можно также за счет обработки призабойной зоны кислотой либо термическим воздействием. Нередко эти два способа совмещают, воздействуя на пласт горячей кислотой, нагретой за счет теплового эффекта экзотермической реакции металлического магния с раствором соляной кислоты.

ЧИТАЙТЕ ТАКЖЕ