Цифровое зеркало — Журнал «Сибирская нефть» — Приложение «Индустрия 4.0 Просто о сложном» № 154 (сентябрь 2018)

Создать своего двойника и переложить на него самые трудные, неприятные или даже опасные дела и заботы — время от времени такие мечты посещают многих. А сильные мира сего, как говорят, и на самом деле прибегают к услугам очень похожих на себя людей, когда не могут или боятся показываться на публике. Сколько в этом правды, а сколько вымысла, сказать сложно. Однако цифровые двойники разнообразных объектов — зданий, машин, производственных процессов и целых заводов — уже прочно вошли в практику многих отраслей промышленности и решают вполне реальные задачи

Братья по данным

Цифровой двойник (или «цифровой близнец», если буквально переводить английское словосочетание digital twin) — это виртуальный аналог реального объекта, компьютерная модель, которая в своих ключевых характеристиках дублирует его и способна воспроизводить его состояния при разных условиях. По сути, это набор математических формул, описывающих сам объект и протекающие в нем процессы.

Как это ни странно, такой двойник может родиться даже раньше своего оригинала: виртуальную модель могут создать еще на этапе проектирования объекта (здания, машины, установки), чтобы протестировать его работу в разных условиях и режимах и скорректировать проект, если будут обнаружены недочеты. Но затем, когда объект уже построен, такая модель требует постоянного обновления, для того чтобы соответствовать его актуальному состоянию.

Цифровой двойник представляет собой мостик между физическим миром и цифровой реальностью. Такие системы называют киберфизическими. Программные компоненты и физические процессы в них тесно связаны и влияют друг на друга.

И здесь не обойтись без интернета вещей — множества датчиков, которые собирают информацию о работе оборудования, — а также без технологий машинного обучения, которые помогают предсказать, как будет вести себя система в тех или иных обстоятельствах. Это особенно актуально, когда цифровой двойник создается для уже существующего объекта, например установки на нефтеперерабатывающем заводе. Досконально описать все процессы формулами — чрезвычайно сложная задача. Но, имея большой объем данных о работе установки за определенный период времени, проще выявить закономерности в ее работе при помощи нейросети.

В самой идее цифрового двойника нет ничего нового: расчеты и модели того, как будет вести себя какая-нибудь конструкция, установка на заводе или реактор, делались и раньше. Но лишь недавно появились достаточные вычислительные мощности, чтобы проводить такие расчеты в реальном времени, а также возможности для постоянного обновления моделей на основе данных, получаемых с реальных объектов.

Цифровой керн

Керн — столбики породы, которые извлекают из разведочных скважин для изучения характеристик нефтеносного пласта. Это особенно актуально для трудноизвлекаемых и нетрадиционных запасов, поиск технологий для эффективной разработки которых продолжается. Исследование керна в лаборатории — дорогой и длительный процесс. Кроме того, отдельные образцы во время таких тестов часто разрушаются, и продолжать опыты с ними более невозможно. Решить проблему позволяет создание цифровых двойников керна. Для этого образцы породы сканируют в томографе высокого разрешения — и дальше проводят виртуальные эксперименты уже с трехмерной компьютерной моделью. Создание таких цифровых двойников керна решает сразу несколько задач: позволяет существенно ускорить проведение исследований, дает возможность для неограниченного количества виртуальных тестов на одном и том же материале, сохраняя реальный образец для проверки результатов и донастройки модели, открывает новые возможности исследования керна на микроуровне. Новая технология работает даже тогда, когда оценить строение и характеристики породы традиционным способом невозможно из-за сложной или хрупкой внутренней структуры или трудностей, связанных с извлечением образцов. Проект «Цифровой керн» по внедрению такой технологии реализуется сейчас в «Газпром нефти».

Зачем нужны цифровые двойники

Некоторые считают, что скоро цифровые двойники будут создаваться для всего, в том числе и для людей. На самом деле в той или иной мере это уже происходит: например, профиль в социальных сетях характеризует круг общения человека, история поисковых запросов — его интересы, а кредитная история — финансовую состоятельность. И эту информацию используют те, кто хочет предсказать наше поведение, — работодатели, спецслужбы, банки, продавцы товаров и услуг. Возможно, уже в недалеком будущем развитие систем медицинского мониторинга позволит предупреждать о приближении болезни задолго до появления явных симптомов.

Что же касается промышленных объектов, их цифровые двойники позволяют выбирать наиболее оптимальные режимы работы, ставить виртуальные эксперименты, которые в реальности могут быть сопряжены с риском повредить оборудование. Данные, которые собирают с датчиков на объекте, а также информация о ранее проведенном обслуживании, позволяют установить степень износа и вероятность выхода из строя узлов, а значит, сократить расходы на профилактику и ремонт. Если тот или иной параметр отклоняется от нормы, цифровой двойник проинформирует ответственных сотрудников, которые отреагируют и примут меры.

Те же подходы и технологии дают возможность создавать информационные копии не только отдельных машин или установок, но целых цехов и даже заводов со всеми производственными и логистическими процессами. Такая модель позволит найти узкие места, которые проявят себя лишь через несколько лет работы, и сделать необходимую тонкую настройку.

Для нефтегазовых объектов цифровые двойники — многообещающая технология, ведь такие объекты часто бывают удалены и труднодоступны, распределены на большой территории, их стоимость велика, а эксплуатация связана с рисками. Стремясь сократить эксплуатационные издержки, увеличить объемы добычи и эффективность переработки нефти, нефтяные компании сегодня оцифровывают свои активы — создают цифровые месторождения и цифровые заводы.

Стремясь сократить эксплуатационные издержки, увеличить объемы добычи и эффективность переработки, нефтяные компании сегодня оцифровывают свои активы — создают цифровые месторождения и цифровые заводы

Цифровое месторождение

Развитие концепции цифрового («умного», «интеллектуального» — разные компании используют для обозначения разные слова) месторождения началось с появления умных скважин, оснащенных всевозможными датчиками и системами для удаленного управления. Впрочем, одних скважин недостаточно: необходимо создать модель, в которой будут учтены и геологические особенности месторождения, и все оборудование, которое осуществляет добычу. Такая модель позволяет лучше контролировать процесс добычи, лучше им управлять и в конечном счете добывать больше, эффективнее и безопаснее.

В «Газпром нефти» пилотное внедрение программы «Цифровое месторождение» началось в 2014 году на активах дочерней компании «Газпромнефть-Хантос». В 2017 году здесь был создан Центр управления добычей (ЦУД), объединивший все разработанные в компании решения по повышению эффективности отдельных производственных процессов добычи. Одна из ключевых систем ЦУД — цифровой двойник процесса подъема жидкости из скважин. Он позволяет подбирать наиболее оптимальные режимы работы, заранее идентифицировать нештатные ситуации, вести превентивную оценку работы системы в случае изменения ее конфигурации. Со временем ЦУД пополнится и другими цифровыми двойниками — для систем поддержания пластового давления, энергообеспечения, подготовки и утилизации попутного газа.

По данным исследования компании gartner, 48% предприятий, внедривших технологии интернета вещей, уже используют цифровых двойников или планируют начать их использовать до конца 2018 года. К 2022 году число компаний, запустивших проекты с цифровыми двойниками, утроится, прогнозируют в gartner.

Цифровой завод

В основе цифрового нефтеперерабатывающего завода — цифровые двойники установок НПЗ. Виртуальная копия установки должна заключать в себе максимально полную информацию о каждом ее элементе: характеристики деталей и узлов, инженерных систем, средств автоматизации, их сроки службы, периоды обслуживания и т. д. Кроме того, двойник должен содержать детальное описание физико-химических процессов, процессов потребления и выработки энергии, параметры входного сырья и продуктов производства.

Пока еще ни одна нефтегазовая компания не создала полностью цифровой нефтеперерабатывающий завод, но есть предприятия, которые достигли в этом существенных успехов. Оцифровкой своих нефтеперерабатывающих мощностей занимается и «Газпром нефть», начав с создания цифрового двойника установки гидроочистки бензина каталитического крекинга на Московском НПЗ и установки первичной переработки нефти на Омском НПЗ. Пилотный проект по созданию полностью цифрового завода-робота будет реализован на одном из битумных активов компании.

ЧИТАЙТЕ ТАКЖЕ